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The Geometric Role of Precisely
Engineered Imperfections on the
Critical Buckling Load of
Spherical Elastic Shells
We study the effect of a dimplelike geometric imperfection on the critical buckling load of
spherical elastic shells under pressure loading. This investigation combines precision
experiments, finite element modeling, and numerical solutions of a reduced shell theory,
all of which are found to be in excellent quantitative agreement. In the experiments, the
geometry and magnitude of the defect can be designed and precisely fabricated through a
customizable rapid prototyping technique. Our primary focus is on predictively describ-
ing the imperfection sensitivity of the shell to provide a quantitative relation between its
knockdown factor and the amplitude of the defect. In addition, we find that the buckling
pressure becomes independent of the amplitude of the defect beyond a critical value. The
level and onset of this plateau are quantified systematically and found to be affected by a
single geometric parameter that depends on both the radius-to-thickness ratio of the shell
and the angular width of the defect. To the best of our knowledge, this is the first time
that experimental results on the knockdown factors of imperfect spherical shells have
been accurately predicted, through both finite element modeling and shell theory solu-
tions. [DOI: 10.1115/1.4034431]

1 Introduction

The buckling of shells has long been a canonical problem in the
mechanics community [1–3]. The first prediction for the critical
buckling load of a thin spherical shell under uniform external
pressure was proposed by Zoelly [4], who followed a linear buck-
ling analysis to obtain

pc ¼
2Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 1� �2ð Þ
p g�2 (1)

where E is the Young’s modulus, � is the Poisson’s ratio, and g ¼
R=t is the dimensionless radius of the shell, of radius R and thick-
ness t. For decades, this theoretical prediction was found to be in
disagreement with the experimental results [5–10], and attempting
to reconcile the two has been a cornerstone in structural mechan-
ics [3]. Throughout this paper, we focus exclusively on spherical
shells.

In Fig. 1, we plot a survey of historical experimental results
from the literature for the knockdown factor jd ¼ pmax=pc,
defined as the ratio between the experimental buckling load pmax

and pc, from Eq. (1), as a function of the dimensionless shell
radius, g. In all these combined experimental studies, the dimen-
sionless shell radius was varied in the range 76 � g � 2834,
resulting in a widespread of knockdown factors: 0:05 � jd � 0:9.
The general trend of these data is that jd decreases for increasing
values of g, albeit with a broad spread. Low-precision spherical
shells produced by metal spinning [6,7] or plastic vacuum draw-
ing [8] were found to buckle at relatively low values of the critical
pressure (0:17 < jd < 0:8), compared to the classic prediction of

Fig. 1 Experimental results of the knockdown factor, jd , ver-
sus the radius-to-thickness ratio, g 5 R=t , of spherical shells.
Most of the previous experiments [5–9] (open symbols) were
conducted with shallow spherical segments and resulted in a
large variation in jd 5 0.17–0.9. Carlson et al. [10] used com-
plete spherical shells and increased the knockdown factor from
0.05 to 0.86 by improving the shell surface and loading condi-
tions. Our near perfect shells (closed circle) have a small varia-
tion in jd 5 0.61–0.92, which can be lowered significantly by
engineering a dimplelike defect (closed square).
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Eq. (1), presumably due to significant material and geometric
imperfections imparted through the fabrication process. By con-
trast, high-precision shells fabricated by machining aluminum [9]
tended to attain higher buckling pressures (0:45 < jd < 0:9), but
still with considerable scatter. Note that most of these experimen-
tal investigations were conducted with shallow spherical shell
caps. Complete spherical shells were fabricated by electroforming
[10,11], with a quality of surface finish that could be systemati-
cally improved through a chemical polishing treatment, thereby
increasing the knockdown factor from jd ¼ 0:05 to 0.86. Com-
bined, all these findings have led to the now well-established rec-
ognition that the critical buckling load of a shell structure is
highly sensitive to imperfections.

Von K�arm�an et al. [12–14] offered an explanation for the large
discrepancies between theory and experiments by finding equilib-
rium states of the shell involving large deflections that can be
maintained by a much lower applied load than pc, thereby propos-
ing that the knockdown factors were connected with the elastic
postbuckling behavior of shells. Subsequently, Tsien [5] assumed
the existence of arbitrary disturbances and attributed the knock-
down factors to the highly unstable postbuckling behavior of the
shells, and compared his theory against the experiments.

In 1945, Koiter [15] made a groundbreaking contribution to the
field by developing the general theory of stability for elastic sys-
tems subject to conservative loading. In this work, he introduced
an asymptotic method to connect the initial postbuckling behavior
with the sensitivity to imperfections. Following the English trans-
lation (from Dutch) in 1967 of Koiter’s seminal work, there was
an upsurge of research on the imperfection sensitivity of the buck-
ling of slender structures, and his general theory was applied to a
variety of shell structures and loading conditions [16]. In these
investigations, the discrepancies between theory and experiments
were attributed to variations of the shell thickness, nonuniformity
of loading [17], boundary conditions [18], influence of prebuck-
ling deformations [19], and deviations from the perfect shell
geometry [20]. Focusing on cylindrical shells, Babcock [1] per-
formed a direct comparison of the effect on buckling between dif-
ferent types of imperfection from these various studies [17–20]
and concluded that the most important factor was the presence of
geometric imperfections.

As noted by Babcock [1], fundamental experimental research to
help advance the understanding of imperfection sensitivity has
typically lagged significantly behind theoretical analysis and com-
putation. As a result, the practical design of shell structures tends
to be based on classical results, such as Eq. (1), together with
empirical corrections [2]. Still, attempts to experimentally vali-
date theories on imperfection sensitivity were done extensively
for cylindrical shells [3] and, in fewer cases, for spherical shells
[8,21]. In these experiments, the shape of the specimen was pre-
cisely measured prior to carrying out the buckling test. However,
the experimental fabrication protocols typically impart random-
ness to the size and shape distributions of shell defects. As such,
deterministic relationships have rarely been found between repre-
sentative imperfection distributions and the load-bearing capacity
of the shell. To circumnavigate this, statistical approaches have
been developed to study the problem of shell buckling [3] but
these have not yet been widely adopted for design purposes due to
the lack of high-precision experimental information on the charac-
teristic distributions of the imperfections and knowledge of their
influence on buckling.

More recently, a rapid, versatile, and precision fabrication tech-
nique has been developed to manufacture thin elastic shells with
controlled geometrical and mechanical properties [22]. This tech-
nique involves the coating of hemispherical molds with a polymer
(elastomer) solution, which upon curing yields an elastic shell of
nearly uniform thickness. Elastomeric shells allow for large elas-
tic deformations to occur at operating pressures that are signifi-
cantly lower than that for metallic shells, which significantly
reduces the experimental complexity. While thermoplastic shells
can be produced through injection, rotational, and blow molding,

these techniques are typically geared for mass production and less
suitable to a laboratory research setting, where reproducible,
adaptable, and inexpensive prototyping tools are desirable. Still,
to make the experimental technique developed in Ref. [22] rele-
vant to the study of imperfection sensitivity, there is a need to
adapt it to also fabricate shells that contain precisely designed
defects of known geometric properties. Concurrently to these
experimental developments, recent computational advances have
yielded powerful and accurate numerical tools for large systems
of highly nonlinear ordinary differential equations (ODEs) that
can be readily ported to solve the shell buckling equations [23].
The time is therefore ripe to readdress the canonical mechanics
problem of buckling of imperfect shells, with the goal of develop-
ing a predictive framework that relates the geometry of defects
and the critical buckling conditions.

Here, we combine experiments and numerical analysis to revisit
the buckling of spherical elastic shells under pressure loading,
with an emphasis on determining the geometric role of precisely
engineered imperfections on the buckling pressure. First, we
develop a novel experimental technique to fabricate thin elasto-
meric shells containing a single “dimplelike” defect of known
geometry, and measure their buckling strength under pressure
loading (Sec. 2). In Fig. 1, we plot the knockdown factors of our
shells (20 � g � 108 for nearly perfect shells and g¼ 108 for
shells containing a geometric imperfection), on top of other exper-
imental studies from the literature. We find that jd spans a wide
range, but in a way that can be controlled, reproduced, and pre-
dicted. Finite element method (FEM) simulations (Sec. 3) are
used to characterize the shape of these defects and analyze the
buckling behavior of our imperfect shells, in excellent agreement
with the experiments (Sec. 4). Moreover, a first-order shell theory
is specialized to both perfect and imperfect spherical shells, and a
set of nonlinear ODEs are derived to describe the mechanical
response of our shells and solved numerically (Secs. 5 and 6).
Excellent agreement is found across the triangle of experiments,
FEM, and ODE simulations for both the critical buckling pressure
as a function of the amplitude of the imperfection and the
load–deformation behavior (Sec. 7). Finally, we find that beyond
a critical defect amplitude, the buckling pressure becomes inde-
pendent of the amplitude of the defect and quantitatively charac-
terize this plateau (Sec. 8).

Overall, our results demonstrate that small deviations from the
spherical geometry result in large reductions in the buckling pres-
sure, in a way that can be accurately predicted by knowing the
shape of the defect.

2 Experiments

We have performed precision model experiments to investigate
how the buckling strength of hemispherical elastic shells, under
pressure loading, is affected by a geometric imperfection. In this
section, we start by describing the rapid prototyping technique
used to fabricate our elastomeric shells containing a well-defined
dimplelike defect at their pole. The profile of this dimple defect is
then characterized through digital image processing. Finally, we
present the experimental apparatus used to pneumatically load the
thin shells and measure the critical pressure at which buckling
occurs.

2.1 Fabrication of Precisely Imperfect Thin Elastic Shells.
Our thin elastic shells were manufactured by coating a spherical
mold with a polymer solution, following a protocol similar to that
introduced in a previous study [22], the basis of which is high-
lighted next. Two variations of this technique enable us to first
fabricate flexible (elastic) molds, which are then used to produce
thin elastic shells containing a single dimplelike defect.

The hemispherical elastic molds were fabricated by coating the
surface of a rigid hemisphere (radius R¼ 24.85 mm, machined out
of polyacetal by computer numerical control milling) with a
polymer solution of vinylpolysiloxane (VPS, Elite Double 32,
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Zhermack, Italy), a silicone-based elastomer. VPS was mixed
with a ratio of base to curing agent 1:1 in weight, for 10 s at
2000 rpm (clockwise), and then 10 s at 2200 rpm (counterclock-
wise) using a centrifugal mixer (ARE-310, Thinky USA Inc.,
Laguna Hills, CA). The VPS solution was poured onto the hemi-
sphere and cured in approximately 20 min at room temperature
(20 �C). Upon curing and peeling from the rigid hemisphere, a
VPS shell of thickness t¼ 195 lm was produced. Repeating the
process multiple times enabled us to systematically increase the
thickness of the shell, which once thick enough, itself became the
flexible mold employed to fabricate the thin shells used in the
experiments. Three different molds were fabricated with thick-
nesses, tmold¼{585, 975, 1170} lm, by repeating the coating
three, five, and six times, respectively. The Young’s modulus of
cured VPS was measured to be E¼ 1.255 MPa, and its Poisson’s
ratio was assumed to be �¼ 0.5.

The actual thin spherical specimens used in the experiments
were fabricated following the same protocol described above, but
using the thick elastic shells, themselves employed as molds. The
VPS solution was poured onto the concave underside of the mold
and turned upside down to drain the excess polymer and produce
a thin lubrication film. The curing of this liquid film yielded a thin
shell with t¼ 230 lm. Note that this value of t was slightly higher
than that reported above for a single coating step of the mold due
to a slightly longer waiting time between the mixing of the poly-
mer and pouring onto the mold [22], to allow sufficient time to
prepare the apparatus and indent the pole (more below). The thin
shells obtained this way had uncontrollable imperfections that
were intrinsic to the fabrication process, for example, systematic
variations of the shell thickness (6.6% standard deviation from
pole to equator [22]), air bubbles, homogeneity of the polymer
mixture, and surface roughness of the mold. Still, these imperfec-
tions were overshadowed by the single dimplelike defect that was
precisely introduced in the shell fabrication protocol, as is
described next.

In Fig. 2, we present a series of photographs, along with corre-
sponding schematic diagrams, that illustrate the fabrication proto-
col of our imperfect thin hemispherical shells, containing a
precisely engineered defect. After filling the mold with VPS and
draining the excess liquid, the pole of the mold was indented by a
flat plate attached to an universal testing machine (5943, Instron,
Norwood, MA). We assume that the mold indentation results in
the same displacement of the shell pole from its perfect spherical
geometry, such that it defines the amplitude, d, of the defect (this
is validated in Sec. 3.1 through FEM simulations). To set d, we
programed the Instron to move the indentation tip at a constant
velocity (0.3 mm/min) until a specific load was detected by a 10 N
load cell, corresponding to the targeted amplitude (based on the
linear load–displacement relation), and then fixed this position.
The defect amplitude d was therefore defined as the distance
between the position where the onset of a nonzero load was first
detected and the position at which the target load was reached.
While holding the indentation constant, the VPS solution cured

inside of the deformed mold. Upon curing and peeling from the
mold, the final shells had thickness, t¼ 230 6 11 lm (uncertainty
is standard deviation of ten fabricated shells), resulting in a radius-
to-thickness ratio of g¼ 108. Moreover, this procedure of deform-
ing the mold through indentation allowed us to produce shells with
a single “dimplelike” defect at its pole, whose amplitude could be
varied in the range 0< d (lm)< 542. A localized thicker band
(2 mm thickness) at the equator due to the accumulation of excess
polymer ensured that the boundary conditions there were clamped.

2.2 Experimental Profile of the Dimplelike Defect.
Whereas the fabrication technique presented above enables us to
control the amplitude of the defect, d (through the depth of the
indentation), the precise shape of the dimple is self-selected by
the elastic properties, and hence the deformation, of the mold. In
particular, we are interested in characterizing the defect by the
radial deviation from a spherical shape, wI, as a function of the
zenith angle, b. Experimentally, we have measured this wIðbÞ pro-
file through digital imaging (Nikon D3200 camera, with a Micro-
NIKKOR 60 mm lens) and then extracted the shell contour by an
edge detection algorithm (image processing toolbox, MATLAB). A
circle was fit to the region away from the pole, where the effect of
the indentation is negligible, corresponding to the profile of the
defect-free spherical shell. The difference between this circle and
the digitized profile defines wIðbÞ. Two representative examples
of experimental imperfection profiles are provided in Fig. 3(b),
for two shells fabricated using molds with tmold ¼ 585 and
1170 lm, both at the same defect amplitude d¼ 207 lm. This pro-
files exhibit an inward, axisymmetric, and dimplelike deflection at
the vicinity of the pole (for b � 20 deg), beyond which the shell
remains spherical [ wIðb � 20 degÞ � 0 ]. We have also done
FEM simulations to corroborate these findings, the details of
which will be presented in Sec. 3.1.

2.3 Measuring the Critical Buckling Pressure. The experi-
mental critical buckling pressure, pmax, was measured for each
shell using the following procedure. The shell was mounted onto
an acrylic plate with a hole at its center and connected to both a
syringe pump (NE-1000, New Era Pump Systems, Inc., Farming-
dale, NY) and a pressure sensor (MPXV7002, NXP Semiconduc-
tors, The Netherlands). The air inside the shell was extracted at the
imposed constant flow rate of 0.1 ml/min, while monitoring its
internal pressure at an acquisition rate of 1 Hz using the pressure
sensor. The internal pressure decreased gradually with time, until a
minimum value was reached, at which the shell buckled. The maxi-
mum pressure differential between the outside (atmospheric pres-
sure) and the inside of the shell was defined as the critical buckling
pressure, pmax.

2.4 Experimental Procedure and Range of Parameters.
We proceed by describing the experimental procedure used to
measure pmax for a collection of shells containing precisely

Fig. 2 Fabrication of the thin shell specimens. (a) Photographs and (b) schematic diagrams
of the fabrication protocol used to produce thin spherical shells with a dimplelike defect. (1) A
thick VPS mold shell is filled with liquid VPS and (2) turned upside down. (3) A dimplelike
defect is introduced by indenting the pole of the mold shell with an Instron machine, immedi-
ately after pouring of VPS. ((4) and (5)) Upon curing, a thin elastic shell containing a geometric
defect is peeled off from the mold.
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designed geometric imperfections, of different amplitude and
width. First, 60 shells were fabricated following the protocol
detailed in Sec. 2.1, using the three elastic molds with tmold¼{585,
975, 1170} lm (to change the width of the defect), and systemati-
cally varied the mold indentation depth (to obtain defect ampli-
tudes in the range 0� d (lm)� 542). Throughout, the radius and
thickness of the shell were kept fixed at R¼ 24.85 mm and
t¼ 230 lm, such that g ¼ R=t ¼ 108. For each shell, three identi-
cal experimental runs were conducted; each experimental data
point represents the average of these measurements and its error
bars represent the standard deviation, although these are typically
smaller than the symbols size (e.g., as in Fig. 4).

3 Finite Element Simulations

The FEM simulations were performed using the commercial
package ABAQUS/STANDARD. The model was simplified to be two-
dimensional by assuming rotational symmetry. This reduced the
computational cost by a factor of �20, compared to an equivalent
model using a three-dimensional description of the structure using
shell elements. The shells were treated as incompressible neo-
Hookean solids, and reduced hybrid axisymmetric elements
CAX4RH were employed. A convergence study was performed,
which led to the selection of a regular mesh with 1000 elements in
the zenith direction and an equivalent mesh size in the radial
direction (between 6 and 30 elements, depending on the shell
thickness). All analyses considered a nonlinear geometry.

Two different sets of FEM simulations were performed for the
following purposes: (i) to characterize the shape of the shells

obtained through the fabrication process and (ii) to calculate the
buckling load and postbuckling response of the shells under exter-
nal pressure, for shells with a variety of defect geometries.

3.1 FEM of the Profile of the Imperfect Shells. The goal of
this first set of FEM simulations was to model the fabrication pro-
cedure and determine the shape of the engineered defect, for dif-
ferent levels of indentation of the flexible molds. Each mold was
modeled as a flexible shell (thicknesses tmold¼{585, 975, 1170}
lm), and the indentation plate was modeled as a rigid surface
using RAX2 elements. A frictionless general contact was defined
between all free surfaces. The indentation loading was modeled
by imposing the vertical displacement of the plate, which resulted
in the deformation of the mold. At the end of the simulation, the
position of the inner surface of the mold was extracted and
assumed to be equal to the outer surface of the fabricated shell.
The defect is defined as the radial displacement wI as a function of
the zenith angle, b. The amplitude of the defect, d, is equal to the
deflection at the pole, wIð0Þ.

Our simulations show that the width of the defect, defined as
the zenith angle at which the deflection wI becomes negligible,
increases with both the thickness of the mold and the amplitude,
d. Figure 3(a) shows the profiles of shells with tmold¼ 585 lm and
30� d (lm)� 300. The defect is highly localized near the pole
(b¼ 0), and the small variation of the profile of the shell for
increased values of d can be seen in the zoomed inset of Fig. 3(a).

The shape of different defects can be more easily compared
when wIðbÞ is normalized by d. In Fig. 3(b), we compare the
defect profiles obtained from FEM and experiments (see Sec. 2.2),
finding excellent agreement. The results used in this comparison
correspond to shells with the same amplitude, d¼ 207 lm, fabri-
cated using two molds of thickness, tmold ¼ 585 and 1170 lm. The
clear difference between the profiles obtained with both molds
demonstrates that the overall shape of the defect (e.g., its width)
can be controlled by varying the thickness of the mold.

Given the good agreement between FEM and experiments, for
the remainder of this paper, the reported defect amplitudes and the
corresponding profiles will be computed from FEM from the cor-
responding experimental parameters, given the laborious proce-
dure that would be required to systematically extract the same
quantities from the experiments.

Fig. 4 Knockdown factor, jd 5 pmax=pc , versus the normalized
defect amplitude, �d 5 d=t . In experiments (closed symbols), the
shell specimens were fabricated in the ranges of parameters,
tmold 5 {585, 975, 1170} lm and 0 £ �d £ 2:36. The lines represent
FEM data in which the defect profiles obtained by simulations
with tmold 5 {585, 975, 1170} lm were introduced to vary the
angular width of the defect.

Fig. 3 (a) Profiles of the indented mold calculated by FEM with
tmold 5 585 lm and 30 £ d ðlmÞ£ 300 (in steps of 30 lm) are plot-
ted in (x, y)-coordinates. Inset: Magnified profiles at the vicinity
of the pole. (b) Angular profile of the defect versus zenith angle
for shells with d 5 207 lm: experiments with tmold5{585, 1170}
lm (solid lines) and FEM with tmold 5 {585, 975, 1170} lm
(dashed, dashed-dotted-dotted, and dashed-dotted lines,
respectively).
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3.2 FEM of the Imperfection Sensitivity. A second set of
simulations was then performed to investigate the effect of the
geometry of the imperfections on the buckling load of depressur-
ized shells. In this case, the loading was modeled as live pressure,
applied on the outer surface of the shells. We found that using the
BUCKLE analysis in ABAQUS significantly overestimates the buck-
ling pressure, even with an existent defect. The reason is that this
is a linearized buckling analysis that does not take into account
the deformation that takes place in the principal solution, prior to
the instability. In order to account for the nonlinear geometry, and
given that the collapse of the shells is unstable [24], the simula-
tions employed the Riks method [25] to simultaneously solve for
loads and displacements, with the progress of the analysis meas-
ured by the arc length of the load–displacement. The buckling
pressure was then defined as the maximum pressure attained in
the analysis.

The thickness of the shell was set to t¼ 230 lm, and the geo-
metric imperfections were directly introduced in the mesh. Two
approaches to define the shape of the defect were followed. First,
for direct comparison with the experiments, the profile of the
shells was directly taken from the complete modeling of the full
fabrication process (detailed in Sec. 3.1). In this set of simula-
tions, the geometry of the defects changed for every value of the
thickness of the mold and the applied indentation. The results
from these simulations are shown and compared with the experi-
mental results in Figs. 3 and 4. Second, in order to more thor-
oughly decouple the effect of the amplitude and the width of the
defect, we chose the simpler defect profile of a Gaussian dimple

wI ¼ �de�ðb=b0Þ2 (2)

where b0 controls the width of the defect. This simple parameter-
ization allowed us to perform a systematic study of the effect of
the dimple geometry on the buckling pressure of the shells, pre-
sented in Secs. 7 and 8.

Moreover, and to eventually help us establish parallels with
existing literature, we introduce the geometric parameter [6]

k ¼ f12ð1� �2Þg1=4 g1=2 a (3)

where a is the edge angle of a shallow spherical shell measured
from the axis of symmetry. Kaplan and Fung [6] showed that the
nonlinear buckling behavior of a shallow spherical shell is set by
k, and subsequent studies have tended to present the buckling
pressure as a function of this geometric quantity [6–9]. In the
results presented in Sec. 8, we will use a definition of k that repla-
ces a by the angular width of the imperfection b0 from Eq. (2),
thereby assuming that the nonlinear deformation occurs only in
the region of the shell containing the dimplelike defect. This is
similar to the approach followed in the classic numerical analysis
of Koga and Hoff [26].

4 Comparison Between Experiments and FEM

We now follow the methodologies presented in Secs. 2.4 and
3.2 to compare the experimental and FEM results. In Fig. 4, we
plot the knockdown factor, jd ¼ pmax=pc (normalized critical
buckling pressure), as a function of the dimensionless amplitude,
�d ¼ d=t (normalized by the shell thickness), of a single dimplelike
defect. Three datasets are presented for shells fabricated from
molds with tmold¼{585, 975, 1170} lm, resulting in defects of
increasingly larger angular width, as characterized in Secs. 2.2
and 3.1.

Focusing first on the experiments, for a shell without an engi-
neered defect (�d ¼ 0), we find a knockdown factor of
jd ¼ 0:6960:06, due to the uncontrollable imperfections that are
intrinsic to the fabrication and experimental procedures. These
include variations in the shell thickness from the pole to the equa-
tor [22], small air bubbles trapped in the elastomer during

fabrication, and self-weight, all of which are not taken into
account in the classic prediction of Eq. (1). With the presence of a
defect, beyond �d > 0, the knockdown factor varies widely in the
range 0:15 < jd < 0:75, but in a way that can be robustly and
reproducibly set by systematically varying the geometry of the
defect. The jdð�dÞ data first decrease sharply for 0 < �d � 1:5, but,
eventually, reach a plateau when �d � 1:5 at jd � 0:2. For �d � 1:5,
shells with wider defects (e.g., obtained by using molds with
tmold¼ 1170 lm) have knockdown factors that are slightly higher
than narrower defects (e.g., tmold¼ 585 lm), but this trend is
inverted for �d � 1:5, even if the differences between the three
datasets are relatively small.

The experimental results presented above corroborate the semi-
nal numerical predictions by both Hutchinson [27] for defect
shaped with the critical buckling mode at onset, and by Koga and
Hoff [26] for axisymmetric dimplelike defects. Note, however,
that the defect shape considered by Hutchinson was different from
ours, and Koga and Hoff overestimated the effect of the dimpled
defects [23]. Moreover, the maximum defect amplitude consid-
ered by both of these previous studies was �d ¼ 0:75 [27] and 0.5
[26], such that they did not observe the development of the pla-
teau, whereas we were able to fabricate shells up to �d ¼ 2:36.

In Fig. 4, we superpose numerical FEM results onto the experi-
ments, for identical parameter values, and find remarkable quanti-
tative agreement. Specifically, the FEM data show the presence of
a clear plateau at high values of �d, as well as the crossing and sub-
sequent inversion in the relative buckling strength for shells with
different angular widths, when �d � 1:5. For the parameters
explored, the level of this plateau lies in the range
0:17 < pplateau=pc < 0:20, such that the buckling pressure has a
lower bound at these values. In Sec. 8, we will further explore the
FEM simulations to systematically quantify the level and onset (in
�d) of the plateau, as functions of the defect geometry.

To the best of our knowledge, this is the first time that experi-
mental results are reported showing a direct relationship between
the critical buckling pressure of spherical shells and the systemati-
cally varied geometric properties of an imperfection. Moreover,
for a given defect geometry, we are able to accurately predict the
associated knockdown factors through FEM. Our results are in
stark contrast to the broad spread in the experimental data
extracted from the literature shown in Fig. 1, as well as the inabil-
ity for the classic theories, e.g., Eq. (1), to predict them.

We proceed by supporting this comparison between FEM and
experiments with an analytical description based on a first-order
shell theory. Specializing this theory for shells containing a single
dimplelike defect yields a set of nonlinear ODEs that will then be
solved numerically and compared directly with FEM (as in
Sec. 7).

5 Formulation of the Shell Theory

We now formulate shell buckling equations using a small
strains and moderate rotations theory [23]. By focusing on the
maximum pressure that the shell can support, we shall demon-
strate that middle surface strains remain “very small” and rota-
tions remain “moderately small.” In nonlinear shell theory, this
translates into middle surface strains � satisfying j�j � 1 and rota-
tions u satisfying u2 � 1. Rotations about the middle surface tan-
gents are the most important, while rotation about the normal to
the shell middle surface turns out to be small in the spherical shell
buckling problem. Nevertheless, the equations employed accom-
modate moderate rotations about the normal. Our analysis indi-
cated that there is essentially no difference between dead and live
pressure for the behavior of interest in the current study. Accurate
equations for first-order shell theory with small strains and moder-
ate rotations were given by Sanders [28], Koiter [29,30], and
Budiansky [31]. These are specialized below for initially perfect
spherical shells followed by the introduction of initial imperfec-
tions (as in Sec. 6) that resemble those of our experimentally fab-
ricated shells (presented in Sec. 2.1).
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Euler coordinates ðx; h; rÞ are employed with r as the distance
from the origin, x as the circumferential angle, and h ¼ p=2� b
as the meridional angle ranging from 0 at the equator to p=2 at the
pole. The radius of the undeformed middle surface of the shell is
R. A material point at ðx; h;RÞ on the middle surface of the unde-
formed shell is located on the deformed shell at

�r ¼ uxix þ uhih þ ðRþ wÞir (4)

where ðix; ih; irÞ are unit vectors normal and tangent to the unde-
formed middle surface associated with the respective coordinates.
For general deflections, the displacements ðux; uh;wÞ are func-
tions of x and h. For axisymmetric deflections, ux ¼ 0, while the
other two displacements are functions only of h.

The nonlinear strain–displacement relations make use of the
linearized middle surface strains ðexx; ehh; exhÞ and the linearized
rotations ðux;uh;urÞ with the rotation components about ix; ih,
and ir , respectively, which read

exx ¼
1

R

1

cos h
@ux

@x
� tan huh þ w

� �

ehh ¼
1

R

@uh

@h
þ w

� �

exh ¼
1

2R

@ux

@h
þ 1

cos h
@uh

@x
þ tan hux

� �
(5)

and

ux ¼
1

R
� 1

cos h
@w

@x
þ ux

� �

uh ¼
1

R
� @w

@h
þ uh

� �

ur ¼
1

2R

1

cos h
@uh

@x
þ tan hux �

@ux

@h

� �
(6)

In the small strain/moderate rotation theory, the middle surface
strains are nonlinear

Exx ¼ exx þ
1

2
u2

x þ
1

2
u2

r

Ehh ¼ ehh þ
1

2
u2

h þ
1

2
u2

r

Exh ¼ exh þ
1

2
uxuh

(7)

while the bending strains are linear

Kxx ¼
1

R

@ux

@x
� tan huh

� �

Khh ¼
1

R

@uh

@h

Kxh ¼
1

2R

@ux

@h
þ 1

cos h
@uh

@x
þ tan hux

� �
(8)

In this paper, imperfections in the form of a small, initial stress-
free radial deflection of the middle surface wI from the perfect
spherical shape are considered with ðux; uhÞI ¼ 0, but imperfec-
tions in the form of thickness variations or residual stresses will
not be investigated. In addition, our attention is limited to axisym-
metric imperfections such that wI is a function of h, but not of x.
Assuming that wI itself produces small middle surface strains and
moderate rotations (a condition easily met in all our examples),
EI

ab denotes the strains in Eq. (7) arising from wI. The total strains
due to ðux; uh;wI þ wÞ, where w is additional to wI, are denoted
by EIþU

ab , and the strains that give rise to stress arising from dis-
placements additional to wI are Eab ¼ EIþU

ab � EI
ab

Exx ¼ exx þ
1

2
u2

x þ
1

2
u2

r

Ehh ¼ ehh þ
1

2
u2

h þ
1

2
u2

r �
1

R

dwI

dh
uh

Exh ¼ exh þ
1

2
uxuh �

1

2R

dwI

dh
ux

(9)

Given that the bending strains are linear in the displacements
and their gradients, the same process reveals that Eq. (8) still
holds for the relationship between the bending strains and the
additional displacements, with no influence of wI. From here on,
the additional displacements ðux; uh;wÞ will simply be referred to
as “the displacements.” An imperfection contribution also arises
for live pressure loading which will be introduced shortly.

The stress–strain relations for a shell of isotropic material in
this first-order theory are

Nab ¼
1

1� �2ð ÞEt
1� �ð ÞEab þ �Eccdab

� �
Mab ¼ D 1� �ð ÞKab þ �Kccdab

� � (10)

with bending stiffness D ¼ Et3=½12ð1� �Þ2�. The resultant mem-
brane stresses are ðNxx;Nhh;NxhÞ, and the bending moments are
ðMxx;Mhh;MxhÞ. With S denoting the spherical reference surface
specified by r¼R and the Euler angles ðx; hÞ, the strain energy in
the shell is

SE ux; uh;wð Þ ¼
1

2

ð
S

MabKab þ NabEabf gdS (11)

For a perfect shell, the potential energy (PE) of the uniform
inward pressure p on the shell is the negative of the work done by
the pressure. For dead pressure (per unit original area of the mid-
dle surface and acting radially), we have

PE ¼ p

ð
S

wdS (12)

For live pressure (per area of the deformed middle surface and
acting normal to the deformed middle surface), the potential
energy is the negative of the pressure times the change of volume
DV within the middle surface. The exact expression for DV is a
cubic function of the displacements and their gradients when
expressed as an integral over the reference spherical hemispheri-
cal surface [23]. It is worth recording that Koiter [30] has given
an expression for DV which appears to include errors or misprints.
For axisymmetric displacements and live pressure

PE ¼ pDV ¼ p

ð
S

wþ 1

3
uhuh þ w exx þ ehhð Þþ Rþ wð Þexxehh
��

þ exxuhuhg
	

dS (13)

This result is applicable to either a full spherical shell or any shell
segment, such as the hemisphere considered here, which is con-
strained, and uh vanishes on the boundary.

We proceed by introducing the effect of an axisymmetric initial
imperfection wI using the process described above for the strains,
where w becomes additional to wI. Because it is linear in w, PE
for dead pressure remains as Eq. (12). For live pressure, the pro-
cess using Eq. (13) gives a lengthy expression which is abbrevi-
ated here as

PE ¼ pðDVIþU � DVIÞ (14)

The energy of the loaded shell system is therefore

W ¼ SEðux; uh;wÞ þ pFðux; uh;wÞ (15)
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where PE¼ pF, with F given by Eq. (12) for dead pressure or Eq.
(14) for live pressure.

As an aside, it is worth noting that Donnell–Mushtari–Vlasov
(DMV) shell theory also generates accurate solutions for the prob-
lems considered in this paper. The equations for that theory for a
spherical shell are immediately obtained as follows: one omits u2

r
in the strains in Eq. (9), and the in-plane displacements, ux and
uh, are also neglected in the rotations in Eq. (6). In addition, the
expression for dead pressure given by Eq. (12) is usually assumed
for DMV.

6 Axisymmetric Deformations of Clamped

Hemispheres Containing Axisymmetric Imperfections:

A Set of Nonlinear ODEs

The equations presented in Sec. 5 are now specialized to axi-
symmetric deformations such that uh, w, and wI are functions of h
and ux ¼ 0. Hemispherical shells ð0 � h � p=2Þ clamped at the
equator and subject to uniform inward pressure p are considered.
Dimensionless displacements are defined as U ¼ uh=R; W ¼ w=R
and WI ¼ wI=R. Let dðÞ=dh ¼ ðÞ0. Then, with

u 	 uh ¼ �W0 þ U

e 	 ehh ¼ W þ U0
(16)

the nonzero strains are

Exx ¼ W � U tan h

Ehh ¼ eþ 1

2
u2 �W0Iu

Kxx ¼ �
1

R
tan hu

Khh ¼
1

R
u0

(17)

Equilibrium equations are generated either by requiring dW ¼ 0
in Eq. (15) for all admissible variations ðdU; dWÞ or, equivalently,
by enforcing the principle of virtual work. The two equilibrium
equations for the case of dead loading are

�m 00h þ tan h �mxð Þ0

� 1

1� �2ð Þ n̂h þ n̂x þ n̂h u�W0I

 �� �0h i

þ p̂ ¼ 0 (18)

and

�m0h þ tan h �mx

þ 1

1� �2ð Þ n̂0h þ tan hn̂x � n̂h u�W0I

 �� �

¼ 0 (19)

where ðn̂x; n̂hÞ ¼ ½â=ðEtÞ�cos hðNxx;NhhÞ; ð �mx; �mhÞ ¼ ðR=DÞ
cos hðMxx;MhhÞ; p̂ ¼ ðR3= DÞcos hp, and â ¼ 12ðR=tÞ2. There
are additional terms in these equations for live pressure multiply-
ing p̂ which have not been shown. The clamping boundary condi-
tions at the equator require Uð0Þ ¼ Wð0Þ ¼ W0ð0Þ ¼ 0.

The equilibrium equations can be expressed through the consti-
tutive equations and the strain–displacement relations in terms of
U and W or, equivalently, in terms of u and W, with U ¼ W0 þ u.
The most highly differentiated terms are u000 and W000, thereby
yielding a sixth-order, nonlinear ODE system. In all the problems
considered in this paper, the axisymmetric behavior is such that
the inward deflection at the pole, �Wðp=2Þ, increases monotoni-
cally, while the dimensionless pressure, ~p ¼ R3p=D, increases in
the early stages and then usually attains a limit point after which it
decreases. For this reason, it is effective to treat ~p as an unknown,
to introduce an extra ODE, d~p=dh ¼ 0, and to prescribe �Wðp=2Þ

as the “load parameter.” This augmented system can be reduced
to seven first-order ODEs in the standard form

dy

dh
¼ f h; yð Þ (20)

where y ¼ ðu00;u0;u;W00;W0;W; ~pÞ. Next, we provide the expres-
sions for fðh; yÞ in Eq. (20), for the case of dead pressure (expres-
sions for live pressure involve additional terms multiplying p̂)

f1¼u000 ¼ 1

cosh
2þ�ð Þsinhu00 þ 1þ2�ð Þcoshu0��sinhu

�

�tanh �m 0x�
�mx

cos2h
þn̂h 1þu0 �W00Ið Þþ n̂xþ n̂0h u�W0I


 �
þ p̂

	

f2¼u00; f3¼u0

f4¼W000 ¼�u00 �W0 �u0 u�W0I

 �

þuW00I

þtanh Ehhþ�Exxð Þþ 1

âcosh
n̂h u�W0I

 �

�tanh n̂xþ �mxð Þ� �m 0h
� �

f5¼W00; f6¼W0; f7¼0 ð21Þ

with �mx ¼ �sin huþ � cos hu0; �m 0x ¼ � cos hu00 � ð1þ �Þ
sin hu0 � cos hu; �m 0h ¼ cos hðu00 ��uÞ � ð1þ �Þsin hu0; n̂x ¼
â cos h ðExx þ �EhhÞ, and n̂h ¼ â cos hðEhh þ �ExxÞ, where Exx
and Ehh are given by Eqs. (16) and (17) using U ¼ uþW0. The
derivative, n̂0h, is directly computed in terms of u, W, and their
derivatives.

At the equator ðh ¼ 0Þ, the clamped condition requires
u ¼ 0; W0 ¼ 0, and W¼ 0. The functions u and W are analytic at
the pole, with u being odd and W even about the pole such that
u ¼ u00 ¼ W0 ¼ W000 ¼ 0 at h ¼ p=2. At the pole,
f2 ¼ 0; f3 ¼ u0; f4 ¼ 0; f5 ¼ W00; f6 ¼ 0, and f7 ¼ 0. A somewhat
lengthy expansion about the pole provides the following expres-
sion for u000 at h ¼ p=2:

f1 ¼
3

8
2 � 1

3
þ �

� �
u0þ2â 1þ �ð Þ u0 þW00 þWð Þ 1þ u0 �W00I


 ��

þ ~p
i

ð22Þ

Solving Eq. (20) using a modern nonlinear ODE solver pro-
vides highly accurate results. In particular, the buckling pressure,
i.e., the maximum pressure attained at the limit point, can be cal-
culated accurately and efficiently. We have used the ODE solver
routine DBVPFD in IMSL [32], which incorporates Newton itera-
tion to satisfy the nonlinear equations and an automatic mesh
refinement to meet accuracy tolerances. As already noted, the
inward pole deflection serves as the loading parameter, and it is
increased in incremental steps using a converged solution at one
step as the starting guess for the next step. The solution process is
fast and robust. As will be illustrated, the solutions can be readily
obtained at deflections well past the limit point, beyond the onset
of buckling. For the problems that we shall consider, our simula-
tions have shown that there is virtually no difference between pre-
dictions for dead and live pressure. The results reported
throughout have been computed assuming live pressure.

Thus far, we have exclusively considered axisymmetric imper-
fections, and both the FEM and ODE analyses assume axisymme-
try. It is conceivable that nonaxisymmetric bifurcations could
occur for this system. Nevertheless, a recent analysis [23] employ-
ing the moderate rotation theory presented in Sec. 5 found no evi-
dence for such bifurcations, neither for perfect shells (even for
large pole deflections up to w=t ¼ 10) nor for shells containing a
dimple imperfection (before the maximum pressure of the axisym-
metric state). On the other hand, the previous experimental and
FEM studies with thin elastic shells under a variety of loading
conditions [33–36] have found that an originally axisymmetric
buckled shell may develop nonaxisymmetric localized angular
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structures, referred to as s-cones, in the advanced postbuckling
regime. This mechanical behavior is, however, beyond the scope
of our work, and the remainder of this paper focuses entirely on
an axisymmetric analysis and response. We therefore leave a
more detailed investigation of the possibility of nonaxisymmetric
imperfections and/or response for a future study.

7 Comparison Between ODE and FEM Results

We proceed by comparing the results for the mechanical
response of the shells obtained from both the ODE solution and
FEM, which also serves as a joint verification of the two frame-
works. Figure 5 shows the effect that imperfections with different
amplitudes have on the prebuckling and the postbuckling behav-
ior, with a focus on the evolution of the internal pressure during
deformation. For the remainder of this paper, no results are pro-
vided for very small values of defect amplitude: �d < 0:15 for
FEM and �d < 0:2 for ODE. The reason is that such deflections are
too small to be accurately and reliably taken into account by the
respective numerical algorithms.

In Fig. 5(a), we plot the normalized pressure, �p ¼ p=pc, versus
the normalized volume change, �V ¼ DV=V0, where V0 is the total
volume change of the perfect shell immediately prior to the onset

of buckling, for both the ODE solution (solid lines) and FEM
(dashed lines). For a nearly perfect shell with a small imperfection
�d ¼ 0:03 (black lines), the pressure first increases linearly with
increasing �V and reaches a maximum value, �pmax ¼ pmax=pc, just
before buckling occurs. Past this point, �p decreases with decreas-
ing �V , closely following the upward branch, and then turns around
to eventually decrease with increasing �V . If �V is imposed and
increased monotonically, then the shell becomes unstable and
undergoes snap-buckling almost immediately after the maximum
normalized pressure �pmax is attained. If the shell were perfect,
there would be a pressure drop when �V ¼ 1 to the lower branch at
�p � 0:2, after which �p would continue to decrease for increasing
�V . For shells containing defects with higher values of �d, the vol-
ume change required for buckling decreases and the peak pressure
is progressively lower. Thus, even though increasing �d weakens
the shell, buckling is less catastrophic. When the imperfection
amplitude is sufficiently large (e.g., �d 
 1), the pressure decreases
smoothly after the maximum value is attained, without a pressure
jump. It is important to highlight that in all of these results, the
FEM and ODE data (dashed and solid lines, respectively) are
nearly indistinguishable, which serves as a joint verification of
both numerical approaches.

In Fig. 5(b), the same data presented in Fig. 5(a) are now replot-
ted as a function of the normalized displacement of the shell pole,
�w ¼ w=t, to obtain the load–displacement behavior. For all curves
(different values of the defect amplitude, �d), �p initially increases
sharply with �w in the early stages of deformation (linear
response), until a maximum pressure is reached at �w � 1, after
which the pressure decreases. With increasing �d, the value of �pmax

decreases, and the postbuckling decrease of �p with �w becomes
less abrupt. Note that all the �pð�wÞ curves for the different values
of �d explored approach one another in the later stages of deforma-
tion ( �w > 5). Again, an excellent agreement is found between the
ODE solutions (solid lines) and FEM (dashed lines) results, with
at most 0.9% relative difference in �pmax between the two.

8 Parametric Exploration of the Knockdown Factor

Having characterized the load-bearing capacity of the imperfect
shells with defect of different amplitudes, �d, we now return to
characterize the knockdown factor. First, we use a single geomet-
ric parameter to characterize the imperfect shells, and then focus
on the plateau observed for �d � 1:5 (first reported in Sec. 4). In
particular, we focus on the dependence of the level and onset of
this plateau on both the angular width of the defect, b0 (Eq. (2)),
and the radius-to-thickness ratio of the shell, g ¼ R=t. Given the
excellent agreement found in Sec. 4 between the experiments and
FEM (validation), as well as between the FEM and ODE solutions
in Sec. 7 (verification), we center this discussion exclusively on
the FEM and ODE results.

8.1 Characterization of the Imperfect Shell by a Single
Geometric Parameter. Following the works of Kaplan and Fung
[6] and Koga and Hoff [26], we report our results with respect to
the geometric parameter k introduced in Eq. (3), but with a ¼ b0,
which considers the combined effect of g and b0 for a dimension-
less characterization of the defect geometry. We performed
FEM simulations and ODE calculations for two sets of shells
with g¼{100, 200} containing defects in the range 1 � k
� 5 ð2:34 deg � b0 � 16:54 degÞ. In Fig. 6, their corresponding
knockdown factors are plotted versus the imperfection
amplitude, �d.

In Fig. 6(a), we plot jd ¼ �pmax versus �d for 1:5 � k � 5 (in
steps of 0.5). For each value of k, the ODE solutions (solid lines)
and the FEM (dashed and dotted lines) all collapse onto grouped
curves. This indicates that for fixed k, the buckling behavior is not
affected by different values of g. Moreover, these results demon-
strate that the single geometric parameter k characterizing the
defects governs the imperfection sensitivity of our imperfect
shells. All curves exhibit an initial decrease of jd with �d, followed

Fig. 5 Comparison between ODE (solid lines) and FEM
(dashed lines) of the load-carrying behavior of imperfect shells.
(a) Normalized pressure, �p , as a function of the normalized
volume change, �V . (b) Normalized pressure, �p , versus the nor-
malized displacement at the pole, �w . Shells with radius-to-
thickness ratio g 5 100 containing a Gaussian dimple (Eq. (2))
with b0 5 8.83 deg and �d 5 f0:03; 0:1; 0:3; 1g were used.
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by a plateau. As the geometric parameter of the defect is
increased, the plateau appears at higher values of �d, and with a
level that decreases monotonically with k. For example, the small
defect with k ¼ 1:5 has an initially sharp decrease of jdð�dÞ and
the plateau is attained at �d � 1, whereas the largest defect

considered (k¼ 5) exhibits a slower initial decay and the plateau
is only reached after �d � 3.

In Fig. 6(b), we focus exclusively on FEM and present the same
data as in Fig. 6(a), but with a higher density of data in the range
1 � k � 5, in steps of 0.25. At each value of �d, there is a critical
kc that corresponds to the lowest buckling pressure, which is plot-
ted in Fig. 6(c). The stepwise nature of these data stems from the
discrete increase of k in steps of 0.25, and a more continuous
curve would have been obtained for a finer variation of this
parameter. Koga and Hoff [26] also studied the critical conditions
that minimize jd, for dimplelike defects with amplitudes in the
range 0:1 � �d � 0:5, and reported a value of kc ¼ 4. By contrast,
we observe that kc increases monotonically with �d, within the
range of parameters studied, from kc ¼ 1:875 at �d ¼ 0:15 up to
kc ¼ 5 at �d ¼ 3. This discrepancy is likely due to the rudimentary
(but pioneering) computational tools available at the time of their
study, as pointed out by Hutchinson [23].

It is also interesting to note that there is a lower bounding enve-
lope (thick solid curve in Fig. 6(b)) that encloses all of the jdð�dÞ
curves. Empirically, we have found that this minimum envelope is
well described by

jd ¼ 0:068þ 0:25

0:28þ �d
(23)

The empirical description of Eq. (23), together with the data in
Fig. 6(c), provides a design guideline for the shape that a defect
should have in order for a shell to buckle at the lowest possible
pressure. Whereas traditional applications in structural mechanics

Fig. 6 Knockdown factor, jd , versus the normalized defect
amplitude, �d, for a variety of k. (a) Solid lines represent the
results of the ODE solutions, and dashed and dotted lines cor-
respond to FEM simulations for different g 5 {100, 200}, respec-
tively, with 1.5 £ k £ 5, in steps of 0.5. (b) FEM results for
1 £ k £ 5, in steps of 0.25. The lower bounding envelope (thick
solid line) is determined by fitting (Eq. (23)). (c) Critical geomet-
ric parameter of the defect, kc , at which jd exhibits its minimum
possible value for a given value of �d.

Fig. 7 (a) Pressure level of the plateau versus the geometric
parameter, k, of the defect. (b) Normalized defect amplitude at
onset of the plateau versus k. The various values of the thresh-
old, n, used to define the plateau are provided in the legend.
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would typically seek to maximize jd , these findings could be use-
ful for the more recent movement of utilizing buckling as a mech-
anism for functionality [37,38].

8.2 Buckling Plateau for Large Amplitude Defects.
Finally, we quantitatively characterize the pressure level and onset
amplitude of the plateau in the jdð�dÞ data of Fig. 6(b). The dimen-
sionless pressure level of the plateau, hjdiplateau, is the average of
jd over the extent of the plateau, and its onset, �dplateau, is deter-
mined from





 djd

d�d





 � n (24)

where n is a threshold whose sensitivity is evaluated by choosing
different values, n ¼ f0:005; 0:01; 0:025; 0:05g. In Fig. 7(a), we
plot hjdiplateau versus k and find a monotonic decrease, from
hjdiplateau ¼ 0:45 at k¼ 1 down to hjdiplateau ¼ 0:15 when k¼ 5.
The level of the plateau is insensitive to the chosen values of n
(with a variation of at most 0.35% across the four cases).

Figure 7(b) plots the onset of the plateau, �dplateau, as a function
of k. For small defects in the range k < 2; �dplateau is approximately
constant, but with a value that depends on the choice of n. As k is
increased, �dplateau also increases but the curves with different val-
ues for the thresholds converge. Overall, we conclude that the pla-
teau starts when the amplitude of the imperfection is at least
larger than the shell thickness (�dplateau � 1).

9 Conclusions

We have reported results from experiments on the critical buck-
ling load of spherical elastic shells under pressure loading, with
an emphasis on how their knockdown factors are affected by an
engineered dimplelike imperfection. A fabrication method was
developed to produce elastomeric spherical shells containing a
single defect with geometric properties that could be accurately
controlled and systematically varied. Precision experiments were
performed to measure the critical pressure for the onset of buck-
ling for these shells. The experimental results showed a direct
relationship between the critical buckling pressure and the geome-
try of the imperfection (amplitude and angular width). In addition,
FEM simulations and ODE numerical analyses were conducted,
showing excellent quantitative agreement with each other and
with experiments. To the best of our knowledge, this is the first
time that experimental results on the knockdown factors of imper-
fect spherical shells have been accurately predicted.

Our study is well aligned with efforts currently underway by
NASA and others interested in large shell structures to replace the
old empirical knockdown factors employed in design codes by an
approach that (i) first, measures the topographic distributions of
imperfections, (ii) then, predicts buckling loads from the meas-
ured data, and (iii) finally, determines the corresponding knock-
down factors [39,40]. In contrast to a statistical approach that
starts from measuring uncontrollable imperfections, here we have
precisely and systematically controlled a single imperfection and
were able to predict the associated knockdown factors. We also
found a buckling plateau for large amplitudes of the imperfection
and presented the results of FEM simulations and ODE solutions
to characterize it. Both the level of the plateau and its onset are
functions of a single geometric parameter set by the angular width
of a defect and the radius-to-thickness ratio of the shell. Existing
experimental data collected from the literature on the buckling of
spherical shells (Fig. 1) provide an indication that the plateau may
be connected to the apparent lower limit of the ensemble of his-
toric buckling data. This suggests that replacing the current empir-
ical lower limit curves [2] by a deterministic framework may be a
goal worth pursuing.

We hope that our results will instigate a resurgence of interest
on the mechanics of thin spherical shells and motivate future

explorations on the effect of other types of imperfections on their
buckling behavior. Shell buckling, in addition to its canonical sta-
tus in structural mechanics, continues to be an industrially rele-
vant problem. Furthermore, it is also of interest for the life
sciences, such as in the contexts of viruses [41], capsules [42],
and pollen grains [43]. This is therefore an area of mechanics
research that is as relevant as ever and deserves further attention.
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